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Abstract— In this paper the problem of nonlinear observer design 

for nonlinear systems is addressed. Based on recent results some 

methodologies are presented and the superiority or limitation of 

each one is discussed. The goal is to find the best less conservative 

approach in order to design a stable observer for a large class of 

nonlinear systems. 
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I. INTRODUCTION 

In recent years there has been enormous activity in the study 

of different class of nonlinear systems. many researchers focus 

on Hybrid systems [1],[2]. Singularly perturbed systems has 

also a big interest , in fact most physical systems contain both 

slow and fast dynamics,[3]-[5]. Chaotic system, a nonlinear 

system which characterize by the sensitivity dependence on 

the initial conditions, has been a focal point of interest for 

many researchers [6],[7].The polynomial system is an 

important class of nonlinear systems which can describe the 

behaviour of many processes like electrical machines and 

robot manipulators,[8]-[10]. 

Researchers are still continuing to develop many approaches 

for the study and control of nonlinear systems. Therefore, the 

observer design for nonlinear systems is a subject of many 

research activities over the last three decades [11]-[14].This 

importance is due to the fact that the state estimation has 

various applications in many fields such as system monitoring, 

dynamic modelisation and fault detection. 

The design of observers for nonlinear systems is a challenging 

problem,known the observers developed by Kalman and 

Luenberger for linear systems, different techniques have been 

proposed to deel with the nonlinearities. A first category of 

techniques knows as the extended Kalman and Luenberger 

observers which consists in considering the nonlinear system 

as linear around the estimated trajectory and applying linear 

algorithms. Second category is based on splitting the nonlinear 

system into a linear part and nonlinear one and choosing, then, 

the observer gain larger enough so that the linear part 

dominates the nonlinear one, these observers are known as 

high gain observers [15]. The third approach is based on 

transforming the nonlinear system into a linear one by a 

change of coordinates [16].  

Indeed, many researches focus in a spatial class of nonlinear 

systems which is the class of Lipshitz systems, this class is 

very important ,in fact, any nonlinear system can be 

considered as a Lipshitz system at least locally. Observer 

design for Lipshitz systems was addressed for the first time by 

Thau[17] where a sufficient condition to ensure the stability of 

the observer was presented. After Thau, several researchers 

studied observer design for Lipshitz systems [18]. in which an 

algorithm to design an observer using the algebric Ricati 

equation is presented , this technique was extended in [19] in 

order to study identification and fault detection for Lipshitz 

nonlinear systems. 

Later, many approaches are described in order to design an 

observer for Lipshitz systems. A fist category is based on 

solving the Linear Matrix Inequalities LMI [20],[21]. And the 

second category is based on the resolution of an algebric Ricati 

equation [22]. 

In this paper, these two techniques are presented based on 

many results published in order to do a comparative study. 

The paper  is organized as follow. Section II describes the 

system studied and the problem statement. Section III will 

presents some definitions and background results. Section IV  

is for describing the design of observer for our system. Section 

V illustrates the main difference between the studied 

approaches and finally section VI draws the conclusions. 

II. STUDIED SYSTEM AND PROBLEM STATEMENT  

Consider a nonlinear system represented by : 

( , )x Ax f x u

y Cx

 


                                                           (1) 

Where 
n

x R  is the state , 
p

u R is the input, 
p

y R  

is the output, the matrices 
*n n

A R  ,and 
*p n

C R are such 

that the pair ( , )A C  is observable. The nonlinear function 

( , )f x u  is said to be locally Lipshitz in x  uniformly with 

respect to u which satisfying the following condition : 

There exists 0k   such that  

 1 2 1 2( , ) ( , )f x u f x u k x x   , 1 2,x x  (2) 
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The observer will be considered to be of the form : 

( , ) ( )x Ax f x u L y Cx                                            (3) 

Where 
n

x R  is the state vector of the observer. The matrix 
*n p

L R  represents the observer gain matrix to be calculated 

for state estimation. 

Let e x x  .then the dynamic of the estimation error is 

given by :   

( ) ( , ) ( , ), ,e A LC e f x u f x u x x                          (4) 

Now our objective is to formulate an observer gain L  of     (3) 

for  the system (1) such that the error dynamics (4) is 

asymptotically stable 

III. DEFINITIONS AND BACKGROUND RESULTS 

A. The S-Procedure-Lemma: 

Let 0 ( )V x and 1( )V x n
R ,then 0 ( ) 0V x   \{0}n

x R   

satisfying 1( ) 0V x   if and only if there exist 0  such that  

                 
0 1( ) ( )V x V x    \{0}n

x R                        (5) 

B. The Schur Inequality: 

The linear matrix inequality (LMI) 

                 0, ,T T

T

Q S
Q Q R R

S R

 
   

 
                      (6) 

Is equivalent to one of the following: 

                 
10, 0T

R Q SR S
                                        (7) 

Or: 

                 
10, 0T

Q R S Q S
                                       (8) 

IV. OBSERVER SYNTHESIS  

A. Observer for Lipshitz nonlinear systems using LMI 

The main difficult thing in the design of state observers for 

nonlinear systems is to prove the convergence of the estimator 

error. we will show two different approaches proved by 

quadratic Lyapunov function and Lyapunov functional where 

the stability conditions can be expressed using LMIs. 

Theorem1: [22] 

Consider observer (3) for system (1) such as the condition 

(2) is verified ;then if there exist 0  ,a gain matrix L  and a 

symmetric positive definite matrix P such that : 
2( ) ( )

0
T

A LC P A LC k I P

P I




    
 

 
         (9) 

Then the estimation error converge exponentially to zero . 

Proof of Theorem1: 

Consider the Lyapunov function 
T

V e Pe ,where P  is a 

symmetric positive definite matrix. Then 
T T

V e Pe e Pe  . 

From (1) and (3) ,we obtain  

[( ) ( )]

[ ( , ) ( , )]

[ ( , ) ( , )]

T T

T

T

V e A LC P P A LC e

e P f x u f x u

f x u f x u Pe

   

 

 

                           (10) 

Converting (6) in matrix form we obtain: 

[ { ( , ) ( , )} ]

( ) ( )

( , ) ( , )0

T T

T

V e f x u f x u

eA LC P P A LC P

f x u f x uP

  

     
     

                 

(11) 

Of course, we should now proving that V is negative definite  

From (2) we can have  

   
   
1 2 1 2

2

1 2 1 2

( , ) ( , ) ( , ) ( , )
T

T

f x u f x u f x u f x u

k x x x x

 

  
               (12) 

Hence after converting (12) in matrix form we obtain : 
2 0

[( ) { ( , ) ( , )} ] 0
( , ) ( , )0

T T
x xk I

x x f x u f x u
f x u f x uI

   
       

                  

(13) 

Then  

[( ) { ( , ) ( , )} ] 0
( , ) ( , )

T T
x x

x x f x u f x u M
f x u f x u

 
    

       (14) 

Where   

2 0

0

k I
M

I

 
  
 

                                                (15) 

Applying the S-Procedure Lemma to (10) and (14) we find 

that 0V   if and only if there exists   verifying that  

( ) ( )
0

0

T
A LC P P A LC P

M
P


   

  
 

              (16) 

This leads to (8) 

And after the change of variable
1

L P Y
 : 

2(
0

T T T
A P C Y PA YC k I P

P I




    
 

 
                   (17) 

 

Theorem2: [21] 

Consider observer (3) for system (1) such that f verifying 

(2) ,then if there exist   , c  ,a symmetric definitive positive 

matrices P  and R and a gain matrix L  such that  

2

P R c
I

k  
                                                                     (18) 

( ) ( )
0

T
A LC P A LC P P

P cI

    
 

 
                       (19) 

Then the estimation error converges asymptotically to zero. 

Proof of Theorem2: 

Consider the Lyapunov functional: 
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2

min ( ) ( ( ), ) ( ( ), )T t
V e Pe Q e f x t u f x t u dt

                                                    

(19) 

Then  

2

min

2

min

( ) ( ( ), ) ( ( ), )

( ) ( , ) ( , )

T T

t

V e Pe e Pe

Q f x t u f x t u dt

Q e f x u f x u




 

 

 

 

                                (20) 

From (4) we obtain : 

2

min

2

min

[( ) ( )]

( , ) ( , )

( , ) ( , )

( ) ( ( ), ) ( ( ), )

( ) ( , ) ( , )

T T

T

T

t

t

V e A LC P P A LC e

e P f x u f x u

f x u f x u Pe

Q e f x t u f x t u dt

Q e f x u f x u













   

 

 

 

 



                              (21) 

And from (19) : 

2

min

[( ) ( )]

( , ) ( , )

( , ) ( , )

( ) ( , ) ( , )

T T

T

T

T t

V e A LC P P A LC e

e P f x u f x u

f x u f x u Pe

V e Pe Q e f x u f x u
   

   

 

 

   

                  (22) 

We have 1t
e

  0t   then: 

2

min

[( ) ( )]

( , ) ( , )

( , ) ( , )

( ) ( , ) ( , )

T T

T

T

T

V e A LC P P A LC e

e P f x u f x u

f x u f x u Pe

V e Pe Q f x u f x u  

   

 

 

   

                           (23) 

As 
T

V e Pe  and using (17) we have  
2

2
(T Tk

V e Pe e Qe c e


                                                   (24) 

(2) provides        
( , ) ( , )

, 0
f x u f x u

k e
e


                      (25) 

 

 

So from (24)  we obtain  

2

2

1
( ( , ) ( , )

( , ) ( , )

T
T e e

V e Pe f x u f x u Q
e e

c f x u f x u


  

 

                         (26) 

 And as     
min ( ) ,T n

Q e e Qe e R     

From (26)  

2

2

2

min

1
( ( , ) ( , )

( , ) ( , )

1
( ( ) ) ( , ) ( , )

T
T e e

V e Pe f x u f x u Q
e e

c f x u f x u

Q c f x u f x u






  

 

  

                       (27) 

After multiplying for   we obtain from (27) 

2 2

min ( ) ( , ) ( , ) ( , ) ( , )Q f x u f x u V c f x u f x u     
                                                                                               (28) 

Using (23) we have  

[( ) ( ) ]

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

T T

TT

T

V e A LC P P A LC P e

e P f x u f x u f x u f x u Pe

c f x u f x u f x u f x u

    

   

  

                      (29) 

Therefore V is definite negative if  (17) is satisfied. 

(17) and (18) are an LMI and we obtain for a fixed   after 

the change of variable 
1

L P Y
 : 

(
0

T T T
A P C Y PA YC P P

P cI

    
 

 
                        (30) 

Condition (17) and (18) together with (30) are LMIs involving 

two unknown matrices P and Y .it is easy also to verify that 

(18) and (19) imply (9) ,however the converse is not true. 

B.   Observer design using Ricatti Equations 

Theorem3: [22] 

There exist an observer (3) for system (1) such that (4) is 

quadraticlly stabilized if and only if there exist 0   and 

R such that the following Ricatti inequality has a 

symmetric definite positive solution P : 

2 21
0T T

A P PA k I PP C C 


                               (31) 

The observer gain L  will be chosen as  
2

1

2

T
L P C

                                                                         (32) 

Proof of Theorem3: 

Review to (9) and by applying the Schur Lemma (7) we obtain  

2 1
( ) ( ) 0T
A LC P P A LC k I PP


                      (33) 

So: 

2 1
0T T T

A P PA k I PP C L P PLC


                  (34) 

Then we can have  

2 1
( ) 0T T

e A P PA k I PP e


                                       (35) 

There exist so R such that  

2 21
( ) 0T T T T

e A P PA k I PP e e C Ce 


         e    (36) 

Equation (31) is then a necessary condition. 

Equation (31) can be written as  

2 21
0T T

A P PA k I PP C C I  


                        (37) 

For given , k , and  we can easily solve the following 

Ricatti equation : 

2 21
0T T

A P PA k I PP C C I  


                         (38) 

It may be solved using the MATLAB command “ARE”. 
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We can easily notice that the Ricatti equation has only one 

unknown matrix P ,so it is easier to solve this equation than to 

solve a LMI inequality. 

 

V. ILLUSTRATIVE EXAMPLE 

A. Dynamic model for a single link robot 

 Consider the model of a single link robot :  

1 2

2 3 1

1 1 1

3 4

4 1 3

2 2 2

sin

x x

k k mgl
x x x

J J J

x x

k k l
x x x u

J J J



   



  

                                     (39) 

Where 
1x and 

2x  are the link displacement and its 

velocity,respectively, 
3x and 

4x are the rotor displacement and 

its velocity,respectively. 
1 2, , ,J J k l and g are the link 

inertia,the rotor inertia,the elastic constant,the position of the 

center of mass and the gravity acceleration,respectively. 

 

We can put this model in the form of : 

( )x Ax Bu f x

y Cx

  


                                                     (40) 

 With 
1 2 3 4[ ]T

x x x x x  

 

0 1 0 0

48.6 0 48.6 0

0 0 0 1

48.6 0 48.6 0

A

 
  
 
 
 

    

0

0

0

26.6

B

 
 
 
 
 
 

                     (41) 

1 0 0 0

0 1 0 0
C

 
  
 

            

0

3.33sin 1
( )

0

0

x
f x

 
  
 
 
 

 

The Lipschitz constant for this system is equal to 3.33. 

B. Observer design for a single link robot 

Refer to Theorem 1 and after solving the LMI (17) with  =1 

we obtain : 

 

0.7455 0 0 0

0 0.8064  0.1588 0.3665

0 0.1588 0.7937 0.0718

0  0.3665 0.0718 0.3960

P

 
 
 
 
 
 

                  (42) 

 

 5.7499 11.4371

28.2831 16.5140

2.4049 -29.5317

 -30.2335 -12.0615

L

 
 
 
 
 
 

                                              (43) 

 

 

The eigenvalues of  ( )A LC  are : 

 

 -56.5023

38.3702
( )

 -4.3677

0.2359

eig A LC

 
   
 
 
 

                                               (44) 

 

The eigenvalues of ( )A LC  are negatives so the system is 

stable. Also the eigenvalues are well damped ,the response will 

show no transient oscillations. However, there is two small 

eigenvalues. So the estimated state will converge slowly to the 

actual state. 

 

Using Theorem 3 with solving the Ricatti equation with  

1   and 180   we obtain : 

 

1.2812 0 0 0

0 1.2812  0.0038  0.0028

0  0.0038 1.9165  0.0941

0   0.0028 0.0941 1.7473

P

 
 
 
 
 
 

                  (45) 

 

2.1985  -10.1764

 9.2095  2.1985

 -0.017 -0.0480

 -0.0469  0.0075

L

 
 
 
 
 
 

                                              (46) 

 

The eigenvalues of  ( )A LC  are : 

 

 -2.1985 +10.1637i

 -2.1985 -10.1637i
( )

+ 0.1818i

 - 0.1818i

eig A LC

 
 
  
 
 
 

                              (47) 

 

In this case eigenvalues have lower damping and the overall 

eigenvalues are large. So the estimated states rapidly converge 

to the actual state and transient oscillations are not present. 

The transient performance is better than the previous LMI 

solution. 
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VI. COMPARISON BETWEEN THE PRESENTED APPROACHES 

 In the first approach, the convergence of the estimation error 

has been studied with quadratic Lyapunov function and 

Lyapunov functional and the condition of stability has been 

expressed using LMI with two unknown variables , which are 

difficult to be satisfied when the Lipshitz constant is large. 

For the second approach ,it requires an algebric Ricatti 

equation to be solved with one variable which yields for a 

stable observer for larger Lipshitz constants and that make the 

procedure implement is easy. The important thing to show the 

superiority of the second approach is that it is less conservative 

VII. CONCLUSIONS 

 We have addressed the design problems of observer for a 

class of Lipshitz nonlinear systems .results show the advantage 

of the resolution of the Ricatti equation than the standard LMI 

design technique. So as the subject of future investigations, 

this approach may be used to design observers for more 

complex systems like for example polynomial systems. 
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